YumaazTreeService - Comparte conocimiento, aprende juntos Logo

In Matemáticas / Universidad | 2025-08-04

necesito que me ayuden a resolver estos problemas con su desarrollo

Asked by dodobonitom

Answer (1)

Respuesta:a) [tex]\frac{5}{2}a + b[/tex]b) [tex]\frac{1}{3}b+\frac{1}{3}c-\frac{5}{3}a[/tex]Explicación paso a paso:a) [tex]log(\frac{72}{\sqrt{18}})[/tex]   [tex]log(72) - log(\sqrt{18})[/tex]   [tex]log[(8).(9)] - log(\sqrt{9.2})[/tex]   [tex]log(8) + log(9) - [log(\sqrt{9}) + log(\sqrt{2})][/tex]   [tex]log(2^{3}) + log(3^{2}) - [log(3) + log(2^{\frac{1}{2}})[/tex]   [tex]3log(2)+2log(3) - log(3) -\frac{1}{2}log(2)[/tex]   [tex]\frac{5}{2}log(2) + log(3)[/tex]   [tex]\frac{5}{2}a + b[/tex]b) [tex]log(\sqrt[3]{\frac{15}{32}})[/tex]   [tex]log(\frac{\sqrt[3]{15}}{\sqrt[3]{32}})[/tex]   [tex]log(\sqrt[3]{15})-log(\sqrt[3]{32})[/tex]   [tex]log(\sqrt[3]{3}.\sqrt[3]{5}) - log(\sqrt[3]{8}.\sqrt[3]{4})[/tex]   [tex]log(3^{\frac{1}{3}})+log(5^{\frac{1}{3}})-[log(2)+log(2^{2})^{\frac{1}{3}})][/tex]   [tex]\frac{1}{3}log(3)+\frac{1}{3}log(5)-log(2) - log(2^{\frac{2}{3}})[/tex]   [tex]\frac{1}{3}log(3)+\frac{1}{3}log(5)-log(2) - \frac{2}{3}log(2)[/tex]   [tex]\frac{1}{3}log(3)+\frac{1}{3}log(5)-\frac{5}{3}log(2)[/tex]   [tex]\frac{1}{3}b+\frac{1}{3}c-\frac{5}{3}a[/tex]  

Answered by CesarAC | 2025-08-04