Respuesta:3×|(2x+1)|-7 = 23×|(2x+1)|-7+7 = 2+73×|(2x+1)| = 9(1/3)×3×|(2x+1)| = 9×(1/3) |(2x+1)| = 3 (2x+1) = 3 ó -(2x+1) = 3 2x+1 = 3 ó -2x-1 = 3 2x+1-1 = 3-1 ó -2x-1+1 = 3+1 2x = 2 ó -2x = 4 (1/2)×2x = 2×(1/2) ó -2x×(1/2) = 4×(1/2) x = 1 ó - x = 2x₁ = 1 y x₂ = - 2Verificación con '' x₁ = 1 '' : 3×|(2(1)+1)|-7 = 2 3×|(2+1)|-7 = 2 3×|(3)|-7 = 2 3×3-7 = 2 9 - 7 = 2 2 = 2Verificación con '' x₂ = - 2 '' : 3×|(2(-2)+1)|-7 = 2 3×|(-4+1)|-7 = 2 3×|(-3)|-7 = 2 3×3-7 = 2 9 - 7 = 2 2 = 2R// Por ende , las raíces o soluciones '' x₁ = 1 '' y '' x₂ = - 2 '' , son la respuesta a la ecuación con valor absoluto '' 3×|(2x+1)|-7 = 2 '' dada previamente .