YumaazTreeService - Comparte conocimiento, aprende juntos Logo

In Matemáticas / Universidad | 2025-08-08

Si A=40º, B=60º y c=2.8cm, determinar la longitud de los lados b y c y el valor del ángulo C.

Asked by bdhfkewnnjkf234

Answer (1)

El ángulo C faltante del triángulo tiene un valor de 80°Los lados a y b tienen una longitud de aproximadamente 1.83 y de 2.46 centímetros respectivamenteSe trata de un problema trigonométrico en un triángulo cualesquiera. Donde para resolver triángulos no rectángulos como el de este problema, emplearemos el teorema del seno- también llamado como ley de senos-Teorema del Seno:El teorema del seno establece una relación de proporcionalidad existente entre las longitudes de los lados de un triángulo cualquiera con los senos de sus ángulos interiores opuestos.Dado un triángulo ABC cualquiera con lados a, b y c y con ángulos interiores α, β y γ, siendo estos respectivamente opuestos a los lados,Entonces se cumple la relación:[tex]\large\boxed { \bold { \frac{a}{ sen( \alpha )} = \frac{b}{ sen(\beta ) } = \frac{c}{sen(\gamma)} }}[/tex]Se tiene un triángulo no rectángulo ABC: del cual se conocen la medida de uno de sus lados -con una magnitud de 2.8 centímetros- al que llamamos c, y el valor de dos de sus ángulos -de 40° y de 60°- a los que llamamos A y B respectivamentePor tanto conocemos para este triángulo:[tex]\bold{\overline{AB}=c = 2.8 \ cm}[/tex][tex]\bold{A = 40^o}[/tex][tex]\bold{B = 60^o}[/tex]Donde se pide resolver el triángulo ABC, es decir determinar el valor del ángulo y las dimensiones de los lados faltantesVer gráfico adjunto Hallamos el valor del tercer ángulo del triángulo - al cual denotamos como C -Como la suma de los ángulos interiores de un triángulo es igual a dos rectos, es decir a 180°:Planteamos:[tex]\boxed {\bold { 180^o = A+ B+ C}}[/tex][tex]\boxed {\bold { 180^o = 40^o+ 60^o+ C }}[/tex][tex]\boxed {\bold {C = 180^o -40^o- 60^o }}[/tex][tex]\large\boxed {\bold {C= 80^o }}[/tex]El valor del ángulo C es de 80°Calculamos el valor del lado a (lado BC)[tex]\bold{\overline{BC}=a }[/tex][tex]\large\boxed { \bold { \frac{a}{ sen( \alpha ) }= \frac{c}{sen(\gamma)} }}[/tex][tex]\boxed { \bold { \frac{a}{ sen(A ) } = \frac{c}{sen(C)} }}[/tex][tex]\boxed { \bold { \frac{ a }{sen(40^o) }= \frac{2.8 \ cm }{ sen (80^o ) } }}[/tex][tex]\boxed { \bold { a = \frac{ 2.8 \ cm \cdot sen(40^o ) }{sen(80^o) } }}[/tex][tex]\boxed { \bold { a = \frac{2.8 \ cm \cdot 0.642787609687 }{ 0.984807753012 } }}[/tex][tex]\boxed { \bold { a = \frac{ 1.7998053071236 }{ 0.984807753012 }\ cm}}[/tex][tex]\boxed { \bold { a \approx 1.82757 \ cm }}[/tex][tex]\textsf{Redondeando}[/tex][tex]\large\boxed { \bold { a \approx1.83 \ cm }}[/tex]La longitud del lado a es de aproximadamente 1.83 centímetrosDeterminamos el valor del lado b (lado AC)[tex]\bold{\overline{AC}=b }[/tex][tex]\large\boxed { \bold { \frac{b}{ sen( \beta ) }= \frac{c}{sen(\gamma )} }}[/tex][tex]\boxed { \bold { \frac{b}{ sen(B ) } = \frac{c}{sen(C)} }}[/tex][tex]\boxed { \bold { \frac{ b }{sen(60^o) }= \frac{2.8 \ cm }{ sen (80^o ) } }}[/tex][tex]\boxed { \bold { b = \frac{ 2.8 \ cm \cdot sen(60^o ) }{sen(80^o) } }}[/tex]Como tenemos un ángulo notable[tex]\large \textsf{El valor exacto de sen de 60 grados es de }\bold{ \frac{\sqrt{3} }{2} }[/tex][tex]\boxed { \bold { b = \frac{ 2.8 \ cm \cdot \frac{ \sqrt{3} }{2} }{ 0.984807753012 } }}[/tex][tex]\boxed { \bold { b = \frac{ 1.4 \cdot \not2 \ cm \cdot \frac{ \sqrt{3} }{\not2} }{ 0.984807753012 } }}[/tex][tex]\boxed { \bold { b = \frac{ 1.4\sqrt{3} }{ 0.984807753012 }\ cm}}[/tex][tex]\boxed { \bold { b \approx 2.4622 \ cm }}[/tex][tex]\textsf{Redondeando}[/tex][tex]\large\boxed { \bold { b \approx 2.46 \ cm }}[/tex]La longitud del lado b es de aproximadamente 2.46 centímetrosSe agrega gráfico a escala para comprender las relaciones entre los ángulos y sus lados planteadas, donde se comprueba el resultado obtenido

Answered by arkyta | 2025-08-10